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Abstract The mathematical model of Rahamathunissa

and Rajendran (J Math Chem 44:849–861, 2008) in an

amperometric biosensor response is discussed. In this

paper, we have applied the shifted second kind Chebyshev

wavelets (CW) to obtain the numerical solutions of reac-

tion–diffusion equations containing a nonlinear term rela-

ted to Michaelis–Menton kinetics of the enzymatic

reaction. The application of the shifted second kind CW

operational matrices for solving initial and boundary value

problems is presented. The obtained numerical results

demonstrate efficient and applicability of the proposed

method. The power of the manageable method is con-

firmed. Moreover the use of shifted second kind CW

method is found to be simple, efficient, accurate, small

computation cost, and computationally attractive.

Keywords Shifted second kind Chebyshev wavelets �
Reaction–diffusion system � Enzyme kinetics � Operational

matrices � Amperometric response

Introduction

Non-linear phenomena play a very important role in

physics, chemistry, and biology (heat and mass transfer,

filtration of liquids, diffusion in chemical reactions, etc.).

Considerable advances have been made during the last

decade in the development of polymer-based materials for

use as electro catalysis and as chemical and biological

sensors operating in the batch amperometric model. Useful

literatures in this area have been provided by Hillman

(1987), Lyons (1990), Evans (1990), Wring and Hart

(1992), Albery et al. (1990), Bartlett et al. (1997), Raha-

mathunissa and Rajendran (2008). Starting from the pub-

lication of Clark and Lyons (1962), the amperometric

biosensors became one of the popular and perspective

trends of biosensor (Baronas et al. 2003). The under-

standing of the kinetic regularities of the biosensors is of

crucial importance for their design. The general features of

amperometric response were analyzed in the publications

of Mell and Maloy (1976).

Various simplified analytical models describing electro

catalysis at electroactive polymer films have been devel-

oped over the last 20 years. In brief, the analysis involves

the construction and solution of reaction–diffusion differ-

ential equations, resulting in the development of approxi-

mate analytical expressions for the amperometric current

response. The analysis is not simple since one is concerned

with the modeling of reaction–diffusion equation (RDE)

processes in the films (mathematically, it translates reac-

tion–diffusion with in the finite diffusion space). In many

cases, addition of the chemical reaction term to the Fick’s

diffusion term during formulation of the differential

equation results in the generation of a non-linear expres-

sion, which is not readily, solved using standard analytical

methods.

In recent years, wavelet transforms have found their way

into many different fields in science, engineering, and

medicine. Wavelet analysis or wavelet theory, as a rela-

tively new and an emerging area in applied mathematical

research, has received considerable attention in dealing

with RDEs. It possesses many useful properties, such as

compact support, orthogonality, dyadic, orthonormality,

and multi-resolution analysis (MRA). Recently, wavelets

have been applied extensively for signal processing in
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communications and physics research, and have proved to

be a wonderful mathematical tool. After discretizing the

differential equations in a conventional way like the finite

difference approximation, wavelets can be used for alge-

braic manipulations in the system of equations obtained

which lead to better condition number of the resulting

system.

In the numerical analysis, wavelet based methods and

hybrid methods become important tools because of the

properties of localization. In wavelet-based methods, there

are two important ways of improving the approximation of

the solutions: increasing the order of the wavelet family

and the increasing the resolution level of the wavelet.

There is a growing interest in using various wavelets to

study problems, of greater computational complexity.

Among the wavelet transform families the Haar, Legendre,

and Chebyshev wavelets (CWs) deserve much attention.

The basic idea of Chebyshev wavelet method (CWM) is to

convert the partial differential equations to a system of

algebraic equations by the operational matrices of integral

or derivative. Hariharan and his co-workers (Hariharan

et al. 2009, 2012; Hariharan 2013, Hariharan and Kannan

2010a, b, 2011) introduced the Haar wavelet method for

solving a few reaction–diffusion and fractional reaction–

diffusion problems arising in science and engineering.

Bhrawy and Alofi (2013) had introduced the fractional

integration for the shifted Chebyshev polynomials. Brazkar

et al. (2012) applied the second kind CWM to the nonlinear

Fredholm integral equations.

The main goal is to show how wavelets and MRA can be

applied for improving the method in terms of easy imple-

mentability and achieving the rapidity of its convergence.

The paper is organized the following way. Mathematical

formulation of the problem is presented in ‘‘Mathematical

Formulation of the Problem’’ section. For completeness

sake the second kind shifted CWM is presented in

‘‘Properties of Chebyshev Wavelets’’ section. The method

of solution the differential equation is proposed in

‘‘Method of Solution’’ section. Limiting cases are pre-

sented in ‘‘Limiting Cases’’ section. Concluding remarks

are given in ‘‘Conclusion’’ section.

Mathematical Formulation of the Problem

The enzyme kinetics in biochemical systems has usually

been modeled by ordinary differential equations, which are

based only on reaction without spatial dependence of the

various concentrations. Recent attention has been given to

the effect of diffusion in the process of interactions. When

this effect is taken into consideration, the various concen-

trations in the reaction process are spatially dependent and

the equations governing these concentrations become

partial differential equations of parabolic type (Rahama-

thunissa and Rajendran 2008). In an irreversible monoen-

zyme system the reaction scheme for free enzyme E and

substrate concentrations S may be expressed by

E þ S$KM
ES$k2

E þ P; ð1Þ

where ES is the enzyme–substrate complex and P is the

product. Suppose that reaction–diffusion takes place in an

arbitrary n-dimensional medium X (membrane), where X is

a bounded domain in Rn (n = 1, 2, …). Then the rate of

change of substrate concentrations S = S(t, v), at time t,

position v [ X is equal to the sum of the rate due to

reaction and diffusion, and is given by Pao (1982).

oS

ot
¼ DSr: rSð Þ � v t; vð Þ; ð2Þ

where DS is the substrate diffusion coefficient, r is the

gradient operation, and v is called ‘‘initial reaction

velocity’’. Various models regarding the expression for

v are formulated by researchers in this field. In this paper,

we discuss some mathematical properties of the solutions

for type of such models using Michaelis–Menton

hypothesis. Based on the Michaelis hypothesis, the

velocity function v for the simple reaction process

without competitive inhibition is given by Pao (1982)

and Baronas et al. (2011).

v t; vð Þ ¼ k2E0S

KM þ S
; ð3Þ

where E0 is the total amount of enzyme and KM is the

‘‘Michaelis constant’’. In this model, the equation for

S becomes

oS

ot
� DSr: rSð Þ ¼ � k2E0S

KM þ Sð Þ ; t [ 0; v 2 Xð Þ: ð4Þ

In one-dimensional Eq. (4) can be written as

oS

ot
¼ DS

o2S

ov2
� k2E0S

KM þ Sð Þ : ð5Þ

Introducing a pseudo-first order rate constant K ¼ k2E0

KM

we can write the above equation as

oS

ot
¼ DS

o2S

ov2
� KS

1þ S
KM

� � : ð6Þ

Here we consider, an initial condition is given in the

usual form,

S 0; vð Þ ¼ s0 vð Þ; v 2 X: ð7Þ

The system governs the substrate concentration S when

there is no competitive inhibition in the reaction. We make

the non-linear PDE Eq. (6) dimensionless by defining the

following parameters:
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u ¼ s

ks1
; x ¼ v

L
; s ¼ DSt

L2
; K ¼ kL2

DS

¼ /2;

a ¼ ks1

KM

;

ð8Þ

where u, x and s represent dimensionless concentrations,

distance and time respectively.

Here a denotes a saturation parameter and K denotes

reaction diffusion parameter.

Now the Eq. (6) reduces to the following dimensionless

form

ou

os
¼ o2u

ox2
� Ku

1þ au
; 0\u� 1; ð9Þ

whereas the initial condition reduces to

u x; 0ð Þ ¼ a constantð Þ: ð10Þ

The diagrammatic representation of saturated (zero

order kinetics) and unsaturated (1st order kinetics) catalytic

kinetics has shown in (Baronas et al. 2003).

Lyons and co-workers (Lyons et al. 1996) solved the

above equations only for the limiting cases au � 1 and

au � 1 [refer Fig. 1 of Ref. Rahamathunissa and Rajen-

dran (2008)] using Dirichlet and Neumann boundary

conditions.

But we wish to obtain an analytical expression for the

concentration profile u(x) of substrate for all values of a. In

steady state, ou
os ¼ 0. In this case the steady state diffusion

Eq. (9) takes the form

o2u

ox2
� Ku

1þ au
¼ 0 ð11Þ

with the initial conditions

u 0ð Þ ¼ 1; u
0

0ð Þ ¼ 0:

Properties of Chebyshev Wavelets

Wavelets constitute a family of functions constructed from

dilation and translation of a single function called the

mother wavelet. When the dilation parameter a and the

translation parameter b vary continuously we have the

following family of continuous wavelets as (Hariharan

et al. 2012).

wa;b tð Þ ¼ aj j�
1
2w

t � b

a

� �
; a; b 2 R; a 6¼ 0: ð12Þ

CWs wnm(t) = w(k, m, t) have three arguments;

k = 1, 2, 3, …, n = 1, 2, 3, …, 2k, m is the order for

Chebyshev polynomials t is the normalized time. They are

defined on the interval [0,1) by:

wnm tð Þ ¼
am2

k
2ffiffi

p
p Tm 2kþ1t � 2nþ 1

� �
; n�1

2k � t\ n
2k

0; otherwise

(
; ð13Þ

where

am ¼
ffiffiffiffi
2;
p

m ¼ 0

2; m ¼ 1; 2; . . .

	
:

Here, Tm(t) are well-known Chebyshev polynomials of

order m, which are orthogonal with respect to the weight

function w tð Þ ¼ 1ffiffiffiffiffiffiffi
1�t2
p , on the interval [-1,1] and satisfy the

following recursive formula:

T0 tð Þ ¼ 1;

T1 tð Þ ¼ t;

Tmþ1 tð Þ ¼ 2tTm tð Þ � Tm�1 tð Þ; m ¼ 1; 2; 3; . . .

The set of CWs are an orthogonal set with respect to the

weight function wn(t) = w(2k?1t - 2n ? 1).

Function Approximation

A function

f tð Þ ¼
X1
n¼1

X1
m¼0

fnmwnm tð Þ; ð14Þ

where

fnm ¼ f tð Þ;wnm tð Þð Þ: ð15Þ

In Eq. (15), h,i denotes the inner product with weight

function wn(t).

If the infinite series in Eq. (15) is truncated, then

Eq. (16) can be written as:

f tð Þ ’ f2k ;M�1 tð Þ ¼
X2k

n¼1

XM�1

m¼0

fnmwnm tð Þ ¼ FTw tð Þ; ð16Þ

where F and w(t) are 2kM 9 1 matrices given by:

F ¼ f10; f11; . . .; f1;M�1; f20; . . .; f2;M�1; . . .; f2k ;M�1


 �T
; ð17Þ

w tð Þ ¼


w10 tð Þ;w11 tð Þ; . . .;w1;M�1 tð Þ;w20 tð Þ; . . .;

w2;M�1 tð Þ; . . .;w2k;0 tð Þ; . . .;w2k ;M�1 tð Þ
�T
:

ð18Þ

Taking the collocation points as following:

ti ¼
2i� 1ð Þ
2kM

; i ¼ 1; 2; . . .; 2k�1M:

We define the CW matrix Um9m as:

Um�m, W
1

2m

� �
W

3

2m

� �
. . . W

2m� 1

2m

� �� 

:

For example, when M = 3 and k = 2 the CW is

expressed as
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Chebyshev Wavelets Operational Matrix of Integration

The integration of the vector W(t) defined in Eq. (18) can

be obtained as

Z t

0

WðsÞds ’ PW tð Þ; ð19Þ

where P is the (2kM) 9 (2kM) operational matrix for

integration and is given (Hariharan and Kannan 2010) as

P ¼

C S S . . . S

O C S . . . S

O O C . . . S

..

. ..
. ..

. . .
.

S

O O O . . . C

0
BBBB@

1
CCCCA
;

where S and C are M 9 M matrices given by:

S ¼

1 0 0 � � � 0

0 0 0 � � � 0

� 1
3

0 0 � � � 0

0 0 0 � � � 0

� 1
15

0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

� 1
2M M�2ð Þ 0 0 � � � 0

0
BBBBBBBBB@

1
CCCCCCCCCA

and

The integration of the product of two CW function vectors

is obtained as

I ¼
Z1

0

W tð ÞWT tð Þdt; ð20Þ

where I is an unit matrix.

Also, A m-set of block pulse functions (BPFs) is defined

as

bi tð Þ ¼ 1; i
m
� t\ iþ1ð Þ

m
;

0; otherwise,

	
ð21Þ

where i = 0, 1, 2, …, (m - 1).

The functions bi(t) are disjoint and orthogonal. That is

bi tð Þbl tð Þ ¼ bi tð Þ; i ¼ l

0; i 6¼ l

	
: ð22Þ

Z1

0

bi sð Þbl sð Þds ¼
1
m
; if i ¼ l

0; if i 6¼ l

	
: ð23Þ

The CWs may be expanded into an m-term BPFs as

Wm xð Þ ¼ Um�mBm xð Þ: ð24Þ

and Bm(t) , [b0(t)b1(t) … bi(t) … bm-1(t)]T.

Lemma: 3.1 If the CW expansion of a continuous func-

tion f(t) converges uniformly, then the CW expansion

converges to f(t).

Theorem 3.1 A function f(t) defined in [0,1), is with

bounded second derivative, say |f00(t)| B B, can be expan-

ded as an infinite sum of CWs, and the series converges

uniformly to the function f(t), that is:

f tð Þ ¼
X1
n¼1

X1
m¼0

cnmw kð Þ
n;m tð Þ; ð25Þ

U6�6 ¼

2:2568 2:2568 2:2568 0 0 0

1:0638 9:5746 18:0854 0 0 0

�2:4823 54:2562 201:7761 0 0 0

0 0 0 2:2568 2:2568 2:2568

0 0 0 1:0638 9:5746 18:0854

0 0 0 �2:4823 54:2562 201:7761

2
6666664

3
7777775
:

C ¼ 1

2k

1
2

1

2
ffiffi
2
p 0 0 � � � 0 0 0

� 1

8
ffiffi
2
p 0 1

8
0 � � � 0 0 0

� 1

6
ffiffi
2
p � 1

4
0 1

12
� � � 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

� 1

2
ffiffi
2
p

M�1ð Þ M�3ð Þ 0 0 0 � � � � 1
4 M�3ð Þ 0 � 1

4 M�1ð Þ
� 1

2
ffiffi
2
p

M M�2ð Þ 0 0 0 � � � 0 � 1
4 M�2ð Þ 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:
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where cnm = hf(t), wn,m
(k) (t)i and h.,.i denotes the inner

product in L2
wn

0; 1½ �:

The series
P

n=1
? P

m=1
? cnm is absolute convergent.

Moreover, it is obvious that, for m = 0, the series
P

n=1
? cn0

wn,0
(k) (x) is convergence. Consequently, it observes that the

series
P

n=1
? P

m=0
? cnmwn,m

(k) (x) converges to the function

f(t) uniformly.

Theorem 3.2 (Accuracy estimation) Let f(t) be a con-

tinuous function defined on[0,1), with bounded second

derivative |f00(t)| bounded by B, and then we have the fol-

lowing accuracy estimation:

rk;M\
ffiffiffi
p
p

B

8

X1

n¼lkþ1

1

n5

X1
m¼M

1

m� 1ð Þ4

2
4

3
5

1
2

; ð26Þ

where

rk;M ¼
Z1

0

f tð Þ �
Xlk

n¼1

XM�1

m¼0

cnmw kð Þ
n;m tð Þ

 !2

wn tð Þdt

2
4

3
5

1
2

:

ð27Þ

Some Properties of Second Kind Chebyshev Polynomials

and Their Shifted Forms

Second Kind Chebyshev Polynomials

It is well-known that the second kind Chebyshev polyno-

mials are defined on [-1,1] by

UnðxÞ ¼
sinðnþ 1Þh

sin h
x ¼ cos h: ð28Þ

These polynomials are orthogonal on [-1,1]

Z1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

UmðxÞUnðxÞdx ¼ 0; m 6¼ n
p
2
; m ¼ n

	
: ð29Þ

The following properties of second kind Chebyshev

polynomials are of fundamental importance in the sequel.

They are eigen functions of the following singular Sturm–

Liouville equation.

ð1� x2ÞD2ukðxÞ � 3xDukðxÞ þ kðk þ 2ÞukðxÞ ¼ 0; ð30Þ

where D 	 d
dx

and may be generated by using the

recurrence relation

Ukþ1ðxÞ ¼ 2xUkðxÞ � Uk�1ðxÞ; k ¼ 1; 2; 3; . . . ð31Þ

Starting from U0(x) = 1 and U1(x) = 2x, or from

Rodrigues formula

UnðxÞ ¼
�2ð Þnðnþ 1Þ!

ð2nþ 1Þ!
ffiffiffiffiffiffiffiffi
ð1�

p
x2Þ

Dn ð1� x2Þnþ
1
2

h i
: ð32Þ

Theorem 3.3 The first derivative of second kind

Chebyshev polynomials is of the form

DUnðxÞ ¼ 2
Xn�1

k¼0
ðkþnÞodd

ðk þ 1ÞUkðxÞ: ð33Þ

Definition: 1 The shifted second kind Chebyshev

polynomials are defined on [0,1] by Un
*(x) = Un(2x - 1).

All results of second kind Chebyshev polynomials can be

easily transformed to give the corresponding results for

their shifted forms. The orthogonally relation with respect

to the weight function
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x2
p

is given by

Z1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x2
p

U
nðxÞU
mðxÞdx ¼ 0; m 6¼ n
p
8
; m ¼ n

	
: ð34Þ

Corollary 1 The first derivative of the shifted second

kind Chebyshev polynomial is given by

DU
nðxÞ ¼ 4
X
k¼0

ðkþnÞodd

ðk þ 1ÞU
k ðxÞ: ð35Þ

Shifted Second Kind Chebyshev Operational Matrix

of Derivatives

Second kind CWs are denoted by wn,m(t) = w(k, n, m, t),

where k, n are positive integers and m is the order of sec-

ond kind Chebyshev polynomials. Here t is the normalized

time. They are defined on the interval [0,1] by

wn;mðtÞ ¼
2

kþ3
2ffiffi
p
p U
mð2kt � nÞ; t 2 n

2k ;
nþ1
2k


 �
0 otherwise

(
; ð36Þ

m = 0, 1, … M, n = 0,1, … 2k - 1. A function f(t) defined

over [0,1] may be expanded in terms second kind CWs as

f ðtÞ ¼
X1
n¼0

X1
m¼0

cnmwnmðtÞ; ð37Þ

where

cnm ¼ f ðtÞ;wnmðtÞð Þw¼
Z1

0

ffiffiffiffiffiffiffiffiffiffiffi
t � t2
p

f ðtÞwnmðtÞdt: ð38Þ

If the infinite series is truncated, then it can be written as

f ðtÞ ¼
X1
n¼0

X1
m¼0

cnmwnmðtÞ ¼ CTwðtÞ; ð39Þ

where C and w(t) are 2k(M ? 1) 9 1 defined by
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A shifted second kind CWs operational matrix of the

first derivative is stated and proved in the following

theorem.

Theorem 2 Let W(t) be the second kind CWs vector

defined in Eq. (40) Then the first derivative of the vector

W(t) can be expressed as

dwðtÞ
dt
¼ DwðtÞ; ð41Þ

where D is 2k(M ? 1) square matrix of derivatives and is

defined by

D ¼

F O : : : O

O F : : : O

: : : : : :

: : : : : :O O : : : F

2
6664

3
7775 ð42Þ

in which F is an (M ? 1) square matrix and its (r,s)th

element is defined by

Fr;s ¼ 2kþ2s r� 2; r [ s and ðr þ sÞ odd

0; otherwise

	
:

Corollary 2 The operational matrix for the n-th

derivative can be obtained from

dnwðtÞ
dtn

¼ DnwðtÞ;
n ¼ 1; 2; . . .where Dn is the n - th power of D:

ð43Þ

Linear Second-Order Two-Point Boundary Value Problems

Consider the linear second-order differential equation

y00ðxÞ þ g1ðxÞy0ðxÞ þ g2ðxÞyðxÞ ¼ GðxÞ; x 2 0; 1½ �; ð44Þ

subject to the initial conditions

yð0Þ ¼ a; y0ð0Þ ¼ b ð45Þ

(or) the boundary conditions

yð0Þ ¼ a; yð1Þ ¼ b ð46Þ

or the most general mixed boundary conditions

a1yð0Þ þ a2y0ð0Þ ¼ a; b1yð1Þ þ b2y0ð1Þ ¼ b: ð47Þ

If we approximate the functions y(x), g1(x), g2(x), and

G(x) in terms of the second kind CW basis, one can write

yðxÞ �
X2k�1

n¼0

XM

m¼0

cnmwnmðxÞ ¼ CTwðxÞ:

g1ðxÞ �
X2k�1

n¼0

XM
m¼0

gnmwnmðxÞ ¼ GT
1 wðxÞ; ð48Þ

g2ðxÞ �
X2k�1

n¼0

XM
m¼0

gnmwnmðxÞ ¼ GT
2 wðxÞ;

gðxÞ ¼
X2k�1

n¼0

XM

m¼0

gnmwnmðxÞ ¼ GTwðxÞ:
ð49Þ

Then

y0ðxÞ � CTDwðxÞ; y00ðxÞ ¼ CT D2wðxÞ: ð50Þ

Now substitution of relations Eqs. (48), (49), and (50)

into Eq. (44), enable us to define the residual, R(x), of this

equation as

RðxÞ ¼ CT D2wðxÞ þ GT
1 wðxÞðwðxÞÞTDT C

þ GT
2 wðxÞðwðxÞT C � GTwðxÞ ð51Þ

and application of the tau method, yields the following

(2k(M ? 1) - 2) linear equations in the unknown

expansion coefficients, cnm, namely

Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x2
p

wjðxÞRðxÞdx ¼ 0; j ¼ 1; 2; . . .2kðM þ 1Þ � 2:

ð52Þ

Moreover, the initial conditions Eq. (45), the boundary

conditions Eq. (46), and the mixed boundary conditions

Eq. (47) lead, respectively, to the following equations

CTwð0Þ ¼ a; CT Dwð0Þ ¼ b;
CTwð0Þ ¼ a; CTwð1Þ ¼ b;

ð53Þ

and

a1CTwð0Þ þ a2Dwð0Þ ¼ a;
b1CTwð1Þ þ b2CT Dwð1Þ ¼ b:

ð54Þ

Thus Eq. (51) with the two equations of Eqs. (53) or (54)

generate 2k(M ? 1) a set of linear equations which can be

solved for the unknown components of the vector C, and

hence an approximate spectral wavelets solution to y(x) can

be obtained.

C ¼ c0;0; c0;1; . . .c0;M; . . .; c2k�1;M; . . .c2k�1;1; . . .; c2k�1;M


 �T

wðtÞ ¼ ½w0;0;w0;1; . . .;w0;M; . . .w2k�1;M; . . .;w2k�1;1; . . .;w2k�1;M�
T

)
: ð40Þ
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Solution of Differential Equation

Consider the initial value problem

DxðtÞ þ NxðtÞ ¼ gðtÞ l[ 0; ð55Þ

where N is the nonlinear operator and D is fractional

derivative. In order to use Legendre wavelets, we first

approximate x(t) as

xðtÞ ¼ CTwðtÞ; ð56Þ

where C and w(t) are defined similarly to Eqs. (11) and

(12). Then, we have:

CT DwðtÞ þ NCTWðtÞ ¼ gðtÞ; ð57Þ

we now collocate Eq. (57) at 2k-1M points xi as

CT DWðtiÞ þ NCTWðtiÞ ¼ gðtiÞ: ð58Þ

We have chosen arbitrary collocation points. By solving

equations system Eq. (58), we obtained solution for

Eq. (55).

Method of Solution

Example: 1 Consider the following nonlinear initial value

problem

u00 � Ku

1þ au
¼ 0 ð59Þ

with the initial conditions

uð0Þ ¼ 1; u
0 ð0Þ ¼ 0: ð60Þ

We solve the Eq. (59) using the algorithm described in

‘‘Properties of Chebyshev Wavelets’’ section for the case

corresponds to M = 2, k = 0 to obtain an approximate

solution of u(x). First, if we make use of Eq. (42) and

Eq. (43), then the two operational matrices D and D2 are

given, respectively, by

D ¼
0 0 0

4 0 0

0 8 0

0
@

1
A D2 ¼

0 0 0

0 0 0

32 0 0

0
@

1
A:

Moreover w(x) can be evaluated to give

wðxÞ ¼
ffiffiffi
2

p

r 2

8x� 4

32x2 � 32xþ 6

0
@

1
A:

If we set

C ¼ c0 c1 c2ð ÞT¼
ffiffiffi
p
2

r
c0 c1 c2ð ÞT ;

then Eq. (59), takes the form

cT D2wðxÞ � kcTwðxÞ
1þ acTwðxÞ ¼ 0; ð61Þ

which is equivalent to 58c2 - 2c0 ? 128c2c0 -

256c1c2 ? [512c2c1 - 2048c2
2 - 8c1 ? 32c2]x ? [2048c2

2 -

32c2]x2 ? 4c1 = 0 at x ¼ 2�
ffiffi
2
p

4
to get,

c0 � 31c2 � 64c2c0 þ 128c2
2 þ 64

ffiffiffi
2
p

c2c1 � ð2þ
ffiffiffi
2
p
Þc1

¼ 0:

ð62Þ

Furthermore, the use of initial conditions in Eq. (59)

lead to the two equation,

2c0 � 4c1 þ 5c2 ¼ 1; ð63Þ
c1 � 4c2 ¼ 0: ð64Þ

The solution of the nonlinear system of equations Eqs.

(62)–(64) gives

c0 ¼ 0:53065; c1 ¼ 0:02452; c2 ¼ 0:00613:

Consequently

u xð Þ ¼ 0:53065; 0:02452; 0:00613ð Þ
2

8x� 4

32x2 � 32xþ 6

0
B@

1
CA

¼ 0:19616x2 � 1:

ð65Þ

Our results can be compared with Rahamathunissa and

Rajendran (2008) results. For larger M, we can get the

results closer to the real values.

Limiting Cases

Unsaturated (First Order) Catalytic Kinetics

In this case, the substrate concentration in the film S(v) is

less than the Michaelis constant KM. This is explained in

Fig. 1 of Ref. Rahamathunissa and Rajendran 2008). When

au � 1, the Eq. (11) reduces to

o2u

ox2
� Ku ¼ 0; ð66Þ

the initial conditions u(0) = 1, u0(0) = 0

u
00

xð Þ�ku xð Þ ¼ 0; ð67Þ

uð0Þ ¼ 1; u0ð0Þ ¼ 0: ð68Þ

Equation (66) takes the form

cT D2wðxÞ � kcTwðxÞ ¼ 0 ð69Þ

which is equivalent to
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64c2 � 2kc0 � ð8c1k � 32kc2Þx� 32kc2x2 þ 4kc1 � 6kc2

¼ 0

at x ¼ 2�
ffiffi
2
p

4
to get,

kc0 þ kc2 �
ffiffiffi
2
p

c1k � 32c2 ¼ 0: ð70Þ

Furthermore, the use of initial conditions in Eq. (66)

lead to the two equation,

2c0 � 4c1 þ 5c2 ¼ 1; ð71Þ
c1 � 4c2 ¼ 0: ð72Þ

Solving Eqs. (70)–(72), we gain

c0 ¼ 0:579; c1 ¼ 0:0632; c2 ¼ 0:0152:

Consequently,

u xð Þ ¼ 0:579; 0:0632; 0:0152ð Þ
2

8x� 4

32x2 � 32xþ 6

0
B@

1
CA

u xð Þ ¼ 0:4864x2 þ 0:0192x þ 0:9964:

ð73Þ

Table 1 shows the numerical solutions of steady state

concentration for various values of K and a. Our results can

be compared with Rahamathunissa and Rajendran (2008)

results. For larger M, we can get the results closer to the

real values.

Saturated (Zero Order) Catalytic Kinetics

In this case, the substrate concentration the substrate con-

centration in the film S(v) is greater than the Michaelis

constant KM. This is explained in Fig. 1 of Ref. Rahama-

thunissa and Rajendran (2008). Hence au � 1 reduces the

Eq. (11) to

o2u

ox2
� K

a
¼ 0; ð74Þ

the initial conditions

uð0Þ ¼ a; u0ð0Þ ¼ 0; ð75Þ

the above equation can be written as

u00ðxÞ � k

a
¼ 0; ð76Þ

CT D2wðxÞ ¼ k

a
; ð77Þ

we get,

64c2 ¼
k

a
; ð78Þ

64c2a� k ¼ 0; ð79Þ

u 0ð Þ ¼ a; u0 0ð Þ ¼ 0: ð80Þ

Put a = 1, k = 1, we get,

64c2 � 1 ¼ 0: ð81Þ

Furthermore, the use of initial conditions in Eq. (74)

lead to the two equation,

2c0 � 4c1 þ 6c2 ¼ a; ð82Þ
c1 � 4c2 ¼ 0: ð83Þ

Solving the above equations, we obtain

c0 ¼
32aþ 5

64
; c1 ¼

1

16
; c2 ¼

1

64
:

Consequently,

u xð Þ

¼ aþ x2

2
:

ð84Þ

Table 2 shows the numerical Solutions of steady state

concentration for various values of K and a. Our results can

be compared with Rahamathunissa and Rajendran (2008)

results. For larger M, we can get the results closer to the

real values.

All the numerical experiments presented in this section

were computed in double precision with some MATLAB

codes on a personal computer System Vostro 1400

Table 1 Numerical solutions of steady state concentration for vari-

ous values of K and a of Eq. (59)

K = 1 and a = 1

x VIM CWM

0.0 1.0000 0.9964

0.2 1.0201 1.0196

0.4 1.0810 1.0819

0.6 1.1855 1.1791

0.8 1.3374 1.3231

1.0 1.5431 1.5020

Table 2 Numerical solutions of steady state concentration for vari-

ous values of K and a of Eq. (74)

K = 1 and a = 1

x VIM CWM

0.0 1.00 1.00

0.2 1.02 1.02

0.4 1.08 1.08

0.6 1.18 1.18

0.8 1.32 1.32

1.0 1.50 1.51
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Processor 9 86 Family 6 Model 15 Stepping 13 Genuine

Intel* 1,596 MHz.

Conclusion

In this paper, the shifted second kind CWM is used to

obtain the numerical solutions of RDEs containing a non-

linear term related to Michaelis–Menton kinetics of the

enzymatic reaction. Numerical results show that the shifted

second kind CWM (CWT) can match the analytical solu-

tion very efficiently with quite a few calculations. Also the

proposed method has a simple implementation process. It

may be concluded that shifted second kind CWT is very

powerful and efficient in finding analytical as well as

numerical solutions for a wide class of linear and nonlinear

differential equations. It provides more realistic series

solutions that converge very rapidly in real physical

problems.
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