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Abstract The mathematical model of Rahamathunissa
and Rajendran (J Math Chem 44:849-861, 2008) in an
amperometric biosensor response is discussed. In this
paper, we have applied the shifted second kind Chebyshev
wavelets (CW) to obtain the numerical solutions of reac-
tion—diffusion equations containing a nonlinear term rela-
ted to Michaelis—Menton kinetics of the enzymatic
reaction. The application of the shifted second kind CW
operational matrices for solving initial and boundary value
problems is presented. The obtained numerical results
demonstrate efficient and applicability of the proposed
method. The power of the manageable method is con-
firmed. Moreover the use of shifted second kind CW
method is found to be simple, efficient, accurate, small
computation cost, and computationally attractive.

Keywords Shifted second kind Chebyshev wavelets -
Reaction—diffusion system - Enzyme kinetics - Operational
matrices - Amperometric response

Introduction

Non-linear phenomena play a very important role in
physics, chemistry, and biology (heat and mass transfer,
filtration of liquids, diffusion in chemical reactions, etc.).
Considerable advances have been made during the last
decade in the development of polymer-based materials for
use as electro catalysis and as chemical and biological
sensors operating in the batch amperometric model. Useful
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literatures in this area have been provided by Hillman
(1987), Lyons (1990), Evans (1990), Wring and Hart
(1992), Albery et al. (1990), Bartlett et al. (1997), Raha-
mathunissa and Rajendran (2008). Starting from the pub-
lication of Clark and Lyons (1962), the amperometric
biosensors became one of the popular and perspective
trends of biosensor (Baronas et al. 2003). The under-
standing of the kinetic regularities of the biosensors is of
crucial importance for their design. The general features of
amperometric response were analyzed in the publications
of Mell and Maloy (1976).

Various simplified analytical models describing electro
catalysis at electroactive polymer films have been devel-
oped over the last 20 years. In brief, the analysis involves
the construction and solution of reaction—diffusion differ-
ential equations, resulting in the development of approxi-
mate analytical expressions for the amperometric current
response. The analysis is not simple since one is concerned
with the modeling of reaction—diffusion equation (RDE)
processes in the films (mathematically, it translates reac-
tion—diffusion with in the finite diffusion space). In many
cases, addition of the chemical reaction term to the Fick’s
diffusion term during formulation of the differential
equation results in the generation of a non-linear expres-
sion, which is not readily, solved using standard analytical
methods.

In recent years, wavelet transforms have found their way
into many different fields in science, engineering, and
medicine. Wavelet analysis or wavelet theory, as a rela-
tively new and an emerging area in applied mathematical
research, has received considerable attention in dealing
with RDEs. It possesses many useful properties, such as
compact support, orthogonality, dyadic, orthonormality,
and multi-resolution analysis (MRA). Recently, wavelets
have been applied extensively for signal processing in
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communications and physics research, and have proved to
be a wonderful mathematical tool. After discretizing the
differential equations in a conventional way like the finite
difference approximation, wavelets can be used for alge-
braic manipulations in the system of equations obtained
which lead to better condition number of the resulting
system.

In the numerical analysis, wavelet based methods and
hybrid methods become important tools because of the
properties of localization. In wavelet-based methods, there
are two important ways of improving the approximation of
the solutions: increasing the order of the wavelet family
and the increasing the resolution level of the wavelet.
There is a growing interest in using various wavelets to
study problems, of greater computational complexity.
Among the wavelet transform families the Haar, Legendre,
and Chebyshev wavelets (CWs) deserve much attention.
The basic idea of Chebyshev wavelet method (CWM) is to
convert the partial differential equations to a system of
algebraic equations by the operational matrices of integral
or derivative. Hariharan and his co-workers (Hariharan
et al. 2009, 2012; Hariharan 2013, Hariharan and Kannan
2010a, b, 2011) introduced the Haar wavelet method for
solving a few reaction—diffusion and fractional reaction—
diffusion problems arising in science and engineering.

Bhrawy and Alofi (2013) had introduced the fractional
integration for the shifted Chebyshev polynomials. Brazkar
et al. (2012) applied the second kind CWM to the nonlinear
Fredholm integral equations.

The main goal is to show how wavelets and MRA can be
applied for improving the method in terms of easy imple-
mentability and achieving the rapidity of its convergence.

The paper is organized the following way. Mathematical
formulation of the problem is presented in “Mathematical
Formulation of the Problem” section. For completeness
sake the second kind shifted CWM is presented in
“Properties of Chebyshev Wavelets” section. The method
of solution the differential equation is proposed in
“Method of Solution” section. Limiting cases are pre-
sented in “Limiting Cases” section. Concluding remarks
are given in “Conclusion” section.

Mathematical Formulation of the Problem

The enzyme kinetics in biochemical systems has usually
been modeled by ordinary differential equations, which are
based only on reaction without spatial dependence of the
various concentrations. Recent attention has been given to
the effect of diffusion in the process of interactions. When
this effect is taken into consideration, the various concen-
trations in the reaction process are spatially dependent and
the equations governing these concentrations become
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partial differential equations of parabolic type (Rahama-
thunissa and Rajendran 2008). In an irreversible monoen-
zyme system the reaction scheme for free enzyme E and
substrate concentrations S may be expressed by

E+S&ES&E E1p, (1)

where ES is the enzyme—substrate complex and P is the
product. Suppose that reaction—diffusion takes place in an
arbitrary n-dimensional medium 2 (membrane), where Q is
a bounded domain in R" (n = 1, 2, ...). Then the rate of
change of substrate concentrations S = S(¢, y), at time f,
position y € Q is equal to the sum of the rate due to
reaction and diffusion, and is given by Pao (1982).

& Dv.(98) (1), @)
where Dg is the substrate diffusion coefficient, V is the
gradient operation, and v is called “initial reaction
velocity”. Various models regarding the expression for
v are formulated by researchers in this field. In this paper,
we discuss some mathematical properties of the solutions
for type of such models using Michaelis—-Menton
hypothesis. Based on the Michaelis hypothesis, the
velocity function v for the simple reaction process
without competitive inhibition is given by Pao (1982)
and Baronas et al. (2011).

ko EoS
v(t, %) =Ky tS

(3)

where Ej is the total amount of enzyme and Ky is the
“Michaelis constant”. In this model, the equation for
S becomes

oS ko EoS

In one-dimensional Eq. (4) can be written as

oS *S  kES

a5 Kyt ®)

koEo

Introducing a pseudo-first order rate constant K = o

we can write the above equation as

os_ o o’ KS )
a o (14s)
ro(1+4)

Here we consider, an initial condition is given in the
usual form,

50, 1) = so(x),

The system governs the substrate concentration S when
there is no competitive inhibition in the reaction. We make
the non-linear PDE Eq. (6) dimensionless by defining the
following parameters:

5 € Q. (7)
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Ky X Dsl kL2 2 o:m2]7( k+1 n—1 n

" T T KT Yonlt) = { v Tn(@T =204 1), <e<g (g3

ks S (8) 0, otherwise
o0 =—),

Km where

where u, x and 7 represent dimensionless concentrations, /2, m=0

distance and time respectively. m = 2, m=1,2..."

Here o denotes a saturation parameter and K denotes
reaction diffusion parameter.

Now the Eq. (6) reduces to the following dimensionless
form

Ou B Q*u Ku

— - 0 <1 9
ot Ox2 l+ou’ =¥z ©)

whereas the initial condition reduces to

u(x,0) = a(constant). (10)

The diagrammatic representation of saturated (zero
order kinetics) and unsaturated (1st order kinetics) catalytic
kinetics has shown in (Baronas et al. 2003).

Lyons and co-workers (Lyons et al. 1996) solved the
above equations only for the limiting cases ou < 1 and
o > 1 [refer Fig. 1 of Ref. Rahamathunissa and Rajen-
dran (2008)] using Dirichlet and Neumann boundary
conditions.

But we wish to obtain an analytical expression for the
concentration profile u(x) of substrate for all values of o. In
steady state, g—‘; = 0. In this case the steady state diffusion

Eq. (9) takes the form

o*u Ku
o2 14ou

(11)
with the initial conditions

u(0)=1, u(0)=0.

Properties of Chebyshev Wavelets

Wavelets constitute a family of functions constructed from
dilation and translation of a single function called the
mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously we have the
following family of continuous wavelets as (Hariharan
et al. 2012).
1, (t—=b

l//%b(t) = |a 21#(7), a,beR, a#0. (12)

CWs  Y,,.(t) = Y(k, m, f) have three arguments;
k=1,2,3,..., n=1,2,3,...,2 m is the order for
Chebyshev polynomials ¢ is the normalized time. They are
defined on the interval [0,1) by:

Here, T,,(t) are well-known Chebyshev polynomials of
order m, which are orthogonal with respect to the weight
function w(t) = \/1+—f2, on the interval [—1,1] and satisfy the

following recursive formula:

To(t) = 1,

Ty(1) =1,

Tni1(t) = 2T, (1) — Tpa (2), m=1,2,3,...

The set of CWs are an orthogonal set with respect to the
weight function w,(f) = w(2**'t — 2n + 1).

Function Approximation

A function

FO =D fumn (), (14)
n=1 m=0

where

fnm = (f(t>7l/jnm(t))' (15)

In Eq. (15), (,) denotes the inner product with weight
function w,,(7).

If the infinite series in Eq. (15) is truncated, then
Eq. (16) can be written as:

J(0) = forpa (1) = iﬂiﬁmn//nm(t) =Fy(1), (16)
where F and () are 2°M x 1 matrices given by:

F = [fiosfits - fim1:f20s - sfortots e foima] s (17)
() = o), 1 (), Y a1 (0¥ (1), -, (8)

T
lpZ,Mfl(t)v"’awZ",O(t)w"7l//2k.M71(t)} .
Taking the collocation points as following:
@i-1)
t = sy 0 L= 1,2,...,2" M.
We define the CW matrix @,,,,, as:

oertp(d) #2)- (5]

For example, when M =3 and k=2 the CW is
expressed as

@ Springer



266

M. Mahalakshmi, G. Hariharan: Wavelet-based approximation method

22568 22568  2.2568 0 0 0

1.0638  9.5746  18.0854 0 0 0

o _ | 24823 542562 201.7761 0 0 0
6x6 = 0 0 0 22568 22568  2.2568
0 0 0 1.0638  9.5746  18.0854
0 0 0 —2.4823 542562 201.7761

Chebyshev Wavelets Operational Matrix of Integration

The integration of the vector ¥(f) defined in Eq. (18) can
be obtained as

t
/ P(s)ds ~ P¥(1),

0

(19)

where P is the (2kM) X (2kM) operational matrix for
integration and is given (Hariharan and Kannan 2010) as

c § S S
o C S S
p=|0 O C S,
R S
O 0 O C
where S and C are M x M matrices given by:
1 0 0 0
0 00 0
—% 00 0
0 00 0
S =
—% 0 0 0
2M(1\1/I—2) 0 0 0
and
1 1
1 T 62 —1 0 1 0
= 2k : Do
1 1
T 2V2M-1)(M-3) 0 00 T AM-3)
1
~ M) 0 0 O 0 —

where [ is an unit matrix.
Also, A m-set of block pulse functions (BPFs) is defined

as
i (i+1)
bi(t) = 1, m §t< m (21)
0, otherwise,
where i =0, 1,2, ..., (m — 1).
The functions b,(f) are disjoint and orthogonal. That is
o b,‘(l‘), i=1
b)) = {O, = (22)
; 1
_ )y, it i=1
/ bi()bi(x)dt — { 5o (23)
0

The CWs may be expanded into an m-term BPFs as

le(x) = ¢mxmBm(~x)~
and B,,(1) £ [bo(Db1(?) ...

(24)
111

Lemma: 3.1 If the CW expansion of a continuous func-
tion f(f) converges uniformly, then the CW expansion
converges to f(1).

b(t) ...

Theorem 3.1 A function f(f) defined in [0,1), is with
bounded second derivative, say /()] < B, can be expan-

0 0

0 0

0 0

0 - 4(le1)
4(le2) 0

The integration of the product of two CW function vectors
is obtained as

/

@ Springer

I= [ PP (t)dr, (20)

ded as an infinite sum of CWs, and the series converges
uniformly to the function f{¢), that is:

o0
Z Cnml//nm

1 m=0

Mg

(25)

n
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where c,,, = (ft), lp(") (1)) and (.,.) denotes the inner
product in L, [0, 1].

The series > 21 > me1Cun 1S absolute convergent.
Moreover, it is obvious that, for m = 0, the series Y 21,0
(//fff())(x) is convergence. Consequently, it observes that the
series S 21 S oCamV(x) converges to the function
f(®) uniformly.

Theorem 3.2 (Accuracy estimation) Let f{(r) be a con-
tinuous function defined on[0,1), with bounded second
derivative |f’(r)l bounded by B, and then we have the fol-
lowing accuracy estimation:

0k,M<@ Z %Zﬁ ) (26)

1
2 2

! FoM-1
o= | [ (1= 3 S eesiatn) moa

0 n=1 m=0
(27)

Some Properties of Second Kind Chebyshev Polynomials
and Their Shifted Forms

Second Kind Chebyshev Polynomials

It is well-known that the second kind Chebyshev polyno-
mials are defined on [—1,1] by

i 1
Up(x) = W x = cos 0. (28)

These polynomials are orthogonal on [—1,1]

2 m=n

/lmun(x)yn(x)dx _ {0 mzn (29)
1

The following properties of second kind Chebyshev
polynomials are of fundamental importance in the sequel.
They are eigen functions of the following singular Sturm—
Liouville equation.

(1 = x*)D? i (x) — 3xDy(x) + k(k + 2)pi(x) =0,  (30)
where D = —x and may be generated by using the
recurrence relation

Uk+1(x) :2xUk(x) — kal(x), k= 172737... (31)

Starting from Uy(x) =1 and U;(x) = 2x, or from
Rodrigues formula

) R VLI DR
Uns) = Gy =) 0=y, (32)

Theorem 3.3 The first derivative of second kind
Chebyshev polynomials is of the form

)=2 Z (). (33)

(k+n)odd

Definition: 1 The shifted second kind Chebyshev
polynomials are defined on [0,1] by U,*,(x) =U,2x — 1).
All results of second kind Chebyshev polynomials can be
easily transformed to give the corresponding results for
their shifted forms. The orthogonally relation with respect

to the weight function vx — x? is given by

/HU ()dx{f} mzn (34)

g m=n

Corollary 1 The first derivative of the shifted second
kind Chebyshev polynomial is given by
DU(x)=4 Y (k+1)Ui(x). (35)

k=0
(k+n)odd
Shifted Second Kind Chebyshev Operational Matrix
of Derivatives

Second kind CWs are denoted by V,,,,(1) = Y(k, n, m, 1),
where k, n are positive integers and m is the order of sec-
ond kind Chebyshev polynomials. Here ¢ is the normalized
time. They are defined on the interval [0,1] by

k3
o (1) = 4 7w Un(@t—n), v 5,5 (36)
’ 0 otherwise

m=0,1,.. M,n=0,1, ... 2k 1. A function f{r) defined
over [0,1] may be expanded in terms second kind CWs as

FO =33 cuntbun (1), (37

n=0 m=0

where
1

o = (O V(0= [ VIO (38)

0

If the infinite series is truncated, then it can be written as

=33 conthon(t) = CTh(1), (39)

n=0 m=0

where C and (¢) are 2k(M + 1) x 1 defined by
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T
C = I:C()A’Q,COA’], . .COJ\/[7 .o .7C2k_]7M, .o 'CZk—lﬁh' . ';C2k—1,M}

l//(t) = [wO‘OalpO.la"'va‘MW' "lkafl,lv"

Wiy pps - -

3] !//Zkfl.M

. 40
) -

A shifted second kind CWs operational matrix of the
first derivative is stated and proved in the following
theorem.

Theorem 2 Let ¥(r) be the second kind CWs vector
defined in Eq. (40) Then the first derivative of the vector
Y(#) can be expressed as

W _ by, (41)

dr

where D is 2k(M + 1) square matrix of derivatives and is
defined by

F o . . . O
o F . . . O

D= (42)
o o0 ...... .F

in which F is an (M + 1) square matrix and its (r,s)th
element is defined by

o 2425 r>2, r>s and (r+s) odd
"0, otherwise ’

Corollary 2 The operational matrix for the n-th
derivative can be obtained from

Y _
an =PV (43)

n=1,2,...where D" is the n - th power of D.

Linear Second-Order Two-Point Boundary Value Problems

Consider the linear second-order differential equation
Y'(x) + g1(0)y' (x) + g2 (x)y(x) = G(x),

subject to the initial conditions

x€10,1], (44)

y0)=o Y(0)=p (45)
(or) the boundary conditions

y(0)=o, y(1)=p (46)
or the most general mixed boundary conditions

1y(0) + 2y (0) = o, byy(1) 4+ boy'(1) = B. (47)

If we approximate the functions y(x), g;(x), g-(x), and
G(x) in terms of the second kind CW basis, one can write

@ Springer

X1 M
Y0~ 30 ot (@) = CTH().
n=0 m=0
2*-1 M
gi1(x) ~ W (¥) = GL(x), (48)
n=0 m=0
k1 M
2@~ YN gunhn(®) = GHy (),
i (#9)
g) =D gunt(x) = Gy (x).
n=0 m=0
Then

Y(x) = C'DY(x),  ¥'(x) = CTD*(x). (50)

Now substitution of relations Egs. (48), (49), and (50)
into Eq. (44), enable us to define the residual, R(x), of this
equation as

R(x) = C"D*Y(x) + Gy (x) (¥ (x))"'D'C
+ G ()W) C - Gy(x) (51)
and application of the tau method, yields the following

M + 1) — 2) linear equations in the unknown
expansion coefficients, c,,,, namely

/\/x — Y (R(x)dx =0, j=1,2,..28M+1)-2.
0

(52)

Moreover, the initial conditions Eq. (45), the boundary
conditions Eq. (46), and the mixed boundary conditions
Eq. (47) lead, respectively, to the following equations

CTY(0) = o, CTDY(0) = f,
CTY(0) =a, CTy(1) = p, (53)
and

a1CT1//(O) + a, DY (0) = a,
biCTY(1) + b,C" DY (1) = B.

Thus Eq. (51) with the two equations of Egs. (53) or (54)
generate 25(M + 1) a set of linear equations which can be
solved for the unknown components of the vector C, and
hence an approximate spectral wavelets solution to y(x) can
be obtained.

(54)
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luti f Differential Equati T
Solution of Differential Equation cTDzlﬁ(x) B ke (x) o, (61)
1+ acTy(x)
Consider the initial value problem
which is equivalent to 58c; — 2c¢o + 128cacy —

Dx(t) + Nx(1) = g(r) p>0, (55)

where N is the nonlinear operator and D is fractional
derivative. In order to use Legendre wavelets, we first
approximate x(¢) as

x(1) = CTy(r),

where C and Y(f) are defined similarly to Egs. (11) and
(12). Then, we have:

(56)

C'DY(t) + NCTP (1) = g(1), (57)
we now collocate Eq. (57) at 25~'M points x; as
C'DY(t;) + NCT¥(1t;) = g(t;). (58)

We have chosen arbitrary collocation points. By solving
equations system Eq. (58), we obtained solution for
Eq. (55).

Method of Solution

Example: 1 Consider the following nonlinear initial value
problem
Ku
" _ =0 59
! 14 om (59)
with the initial conditions
u(0) =1, u(0)=0. (60)

We solve the Eq. (59) using the algorithm described in
“Properties of Chebyshev Wavelets” section for the case
corresponds to M =2, k =0 to obtain an approximate
solution of u(x). First, if we make use of Eq. (42) and
Eq. (43), then the two operational matrices D and D” are
given, respectively, by

0 00 0 00
D=4 0 0| D=0 00
0 8 0 32 00
Moreover 1/(x) can be evaluated to give
2
2
l//(x)z\/: 8x—4
T\ 3222 - 32x +6
If we set
T T T
C=(c a a)=,3la a a),

then Eq. (59), takes the form

256¢1¢s + [512¢ac; — 2048¢5 — 8¢y + 32¢5]x + [2048¢5 —
326,12 + 4¢y = 0 at x = 22 1o get,
co — 31cy — 64cacy + 128¢2 4 64v2c5¢1 — (24 V2)e
=0.
(62)
Furthermore, the use of initial conditions in Eq. (59)
lead to the two equation,
2C0 — 46‘1 + 5C2 = 1, (63)
c1 — 46‘2 =0. (64)
The solution of the nonlinear system of equations Egs.
(62)—(64) gives
co = 0.53065, ¢; = 0.02452, ¢, = 0.00613.

Consequently
2
8x —4
324 —32x+6

u(x) = (0.53065, 0.02452, 0.00613)

=0.19616x* — 1.
(65)
Our results can be compared with Rahamathunissa and

Rajendran (2008) results. For larger M, we can get the
results closer to the real values.

Limiting Cases

Unsaturated (First Order) Catalytic Kinetics

In this case, the substrate concentration in the film S(y) is
less than the Michaelis constant Ky;. This is explained in

Fig. 1 of Ref. Rahamathunissa and Rajendran 2008). When
ou < 1, the Eq. (11) reduces to

2272 — Ku =0, (66)

the initial conditions u(0) = 1, #/(0) = 0

u' (x)—ku(x) = 0, (67)

u(0) =1,4'(0) = 0. (68)
Equation (66) takes the form

DM (x) — keTy(x) =0 (69)

which is equivalent to
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Table 1 Numerical solutions of steady state concentration for vari-
ous values of K and o of Eq. (59)

Table 2 Numerical solutions of steady state concentration for vari-
ous values of K and o of Eq. (74)

K=1landa=1

K=1landa=1

X VIM CWM X VIM CWM
0.0 1.0000 0.9964 0.0 1.00 1.00
0.2 1.0201 1.0196 0.2 1.02 1.02
0.4 1.0810 1.0819 0.4 1.08 1.08
0.6 1.1855 1.1791 0.6 1.18 1.18
0.8 1.3374 1.3231 0.8 1.32 1.32
1.0 1.5431 1.5020 1.0 1.50 1.51
64cy — 2kco — (801k — 32kc2)x — 32kc2x2 + dkc; — 6kcy u(()) =a, u,(O) =0, (75)
=0
the above equation can be written as
atx =232 10 get W'(x) — 5 =0, (76)
o
keo + key — V2e1k — 32¢, = 0. (70) r
. o C'DM(x) = -, (77)
Furthermore, the use of initial conditions in Eq. (66) o
lead to the two equation, we get,
2¢o —4cy +5¢, =1, (71) k
64c) = — 78
¢y —4c, =0. (72) € o’ ( )
Solving Egs. (70)—(72), we gain 64cr0 — k =0, (79)
co = 0.579, ¢; = 0.0632, ¢, = 0.0152. u(0) =a, u'(0) = 0. (80)
Consequently, Putoa =1, k=1, we get,
2 64c, — 1 =0. (81)
u(x) = (0.579, 0.0632, 0.0152) 8x—4 Furthermore, the use of initial conditions in Eq. (74)
32x* —32x + 6 lead to the two equation,

u(x) = 0.4864x* + 0.0192x + 0.9964.
(73)

Table 1 shows the numerical solutions of steady state
concentration for various values of K and a. Our results can
be compared with Rahamathunissa and Rajendran (2008)
results. For larger M, we can get the results closer to the
real values.

Saturated (Zero Order) Catalytic Kinetics

In this case, the substrate concentration the substrate con-
centration in the film S(y) is greater than the Michaelis
constant Ky,. This is explained in Fig. 1 of Ref. Rahama-
thunissa and Rajendran (2008). Hence ou >> 1 reduces the
Eq. (11) to

u K

cr 2y 74
o ’ (74)

the initial conditions
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2¢o — 4cy + 6¢;2 = a, (82)
c1 — 46‘2 =0. (83)

Solving the above equations, we obtain

32a+5 1 1
O="er 1776 =

Consequently,

u(x)
2 (84)
—at>.

Table 2 shows the numerical Solutions of steady state
concentration for various values of K and . Our results can
be compared with Rahamathunissa and Rajendran (2008)
results. For larger M, we can get the results closer to the
real values.

All the numerical experiments presented in this section
were computed in double precision with some MATLAB
codes on a personal computer System Vostro 1400
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Processor x 86 Family 6 Model 15 Stepping 13 Genuine
Intel ~ 1,596 MHz.

Conclusion

In this paper, the shifted second kind CWM is used to
obtain the numerical solutions of RDEs containing a non-
linear term related to Michaelis—Menton kinetics of the
enzymatic reaction. Numerical results show that the shifted
second kind CWM (CWT) can match the analytical solu-
tion very efficiently with quite a few calculations. Also the
proposed method has a simple implementation process. It
may be concluded that shifted second kind CWT is very
powerful and efficient in finding analytical as well as
numerical solutions for a wide class of linear and nonlinear
differential equations. It provides more realistic series
solutions that converge very rapidly in real physical
problems.
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